Arnold Diffusion in A Priori Chaotic Symplectic Maps

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arnold diffusion in Hamiltonian Systems 1: a priori Unstable Case

By using variational method and under generic conditions we show that Arnold diffusion exists in a priori unstable and time-periodic Hamiltonian systems with multiple degrees of freedom.

متن کامل

Chaotic diffusion on periodic orbits: the perturbed Arnold cat map.

Chaotic diffusion on periodic orbits (POs) is studied for the perturbed Arnold cat map on a cylinder, in a range of perturbation parameters corresponding to an extended structural-stability regime of the system on the torus. The diffusion coefficient is calculated, using the following PO formulas: (1). the curvature expansion of the Ruelle zeta function; (2). the average of the PO winding-numbe...

متن کامل

Chaotic Diffusion in Multidimensional Conservative Maps

In the present paper, we provide results and discussions concerning the processes that lead to local and global chaotic diffusion in the phase space of multidimensional conservative systems. We investigate and provide a measure of the extent of the domain over which diffusion may occur. All these issues are thoroughly discussed by dealing with a multidimensional conservative map that would be r...

متن کامل

Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems

In the present paper we consider the case of a general Cr+2 perturbation, for r large enough, of an a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom, and we provide explicit conditions on it, which turn out to be C2 generic and are verifiable in concrete examples, which guarantee the existence of Arnold diffusion. This is a generalization of the result in Delshams et al., Mem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2017

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-017-2867-0